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We present a model for a one-dimensional anisotropic exclusion process 
describing particles moving deterministically on a ring of length L with a single 
defect, across which they move with probability 0 ~< p ~< 1. This model is equivalent 
to a two-dimensional, six-vertex model in an extreme anisotropic limit with a 
defect line interpolating between open and periodic boundary conditions. We 
solve this model with a Bethe ansatz generalized to this kind of boundary condi- 
tion. We discuss in detail the steady state and derive exact expressions for the 
current j, the density profile n(x), and the two-point density correlation func- 
tion. In the thermodynamic limit L --* oo the phase diagram shows three phases, 
a low-density phase, a coexistence phase, and a high-density phase related to the 
low-density phase by a particle-hole symmetry. In the low-density phase the 
density profile decays exponentially with the distance from the boundary to its 
bulk value on a length scale ~. On the phase transition line ~ diverges and the 
current j approaches its critical value Jc = P as a power law, Jc - J oc ~ - 1/2. In 
the coexistence phase the width A of the interface between the high-density 
region and the low-density region is proportional to L 1/2 if the density p r 1/2 
and A = 0  independent of L if p = 1/2. The (connected) two-point correlation 
function turns out to be of a scaling form with a space-dependent amplitude 
n(xl, x2) = A(x2) r% r/r with r = x2-- x~ and a critical exponent x = 0. 

KEY WORDS: Asymmetric exclusion process; Bethe ansatz; steady state; 
boundary-induced phase transitions; correlation functions. 

1. INTRODUCTION 

I n  s t a t i s t i c a l  m e c h a n i c s  in  t w o  d i m e n s i o n s  o n e  m o d e l  o f  p a r t i c u l a r  i n t e r e s t  

h a s  b e e n  t he  s ix -ve r t ex  m o d e l ,  ~1'2) w h i c h  w as  a m o n g  t he  f i rs t  to  b e  s o l v e d  

e x a c t l y  a n d  w h i c h  d e s c r i b e s  a w ide  v a r i e t y  o f  p h y s i c a l  sys tems .  R e c e n t l y  

K a n d e l  et  aL ~3) h a v e  s h o w n  t h a t  fo r  a p a r t i c u l a r  c h o i c e  o f  v e r t e x  w e i g h t s  i ts  
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diagonal-to-diagonal transfer matrix (2) describes a one-dimensional many- 
particle system with stochastic dynamics and hard-core repulsion such that 
each lattice site can be occupied by at most one particle. This is a class of 
models that has been studied in statistical mechanics for a long time, (4) but 
where only relatively few exactly soluble cases are known. (3'5) One of their 
interesting features is their close relationship to growth models (6) and (in 
the continuum) the KPZ equation (v) and the noisy Burgers equation. 

The parameters in this class of diffusive systems can be chosen such 
that the model is symmetric, i.e., the probability of particles moving to the 
left is the same as that of moving to the right; or asymmetric, with different 
probabilities leading to a nonzero net current of particles in one direction. 
In the case of translational invariance, e.g., by imposing periodic boundary 
conditions, the system reaches a stationary state with constant density 
and the quantities of interest are density fluctuations and their correla- 
tions. (3'6'v) On the other hand, one can consider a system on a ring and 
break translational invariance by introducing a defect or inhomogeneity, a 
single pair of sites where the hopping probabilities of the particles are dif- 
ferent from those on the other sites. In the language of growth models these 
are systems with a defect where the local growth rate differs from its bulk 
value (see refs. 8 and 9 and references therein). Considering an asymmetric 
model with a defect, one does not expect a uniform density any more, but 
a nontrivial density profile and, as numerical results show, (8-1~ develop- 
ment of a shock front if parameters are chosen suitably. The interplay 
between the inhomogeneity and particle transport can lead to phase tran- 
sitions even in these one-dimensional models with short-range interaction. 

In this paper we present such a model defined on a ring with a defect 
and give an exact solution using Bethe ansatz methods, which have proven 
to be a powerful tool in the construction and investigation of exact solu- 
tions of two-dimensional integrable models such as the six-vertex model. 
We consider a fully asymmetric exclusion process with deterministic move- 
ment of particles in one direction everywhere except in one point, where 
the motion of the particles in this direction is probabilistic. The dynamics 
of the model is defined as follows: Each site x on the ring (1 <<.x<<.L) is 
either occupied [~x(t)= 1] or empty [~x(t)= 0] at time t. The time evolu- 
tion consists of two half time steps. In the first half step divide the ring with 
L sites (L even) into pairs of sites (1, 2), (3, 4) ..... ( L -  1, L). If both sites 
in a pair are occupied or empty or if site 2 x - 1  is empty and site 2x 
occupied, they remain so at the intermediate time t' = t + 1/2. If site 2x - 1 
is occupied and site 2x empty, then the particle moves with probability 1 
to site 2x, i.e., 

Z2x_ l(t') = ~ 2 x -  l ( t )  "tax(t) (1.1) 

Z2x(t') = Z2x_ l(t) + z2x(t) - Z2x- l(t) z2x(t) 
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These rules are applied in parallel to all pairs. In the second half step the 
pairing is shifted by one lattice unit such that the pairs are now (L, 1), 
(2, 3), etc. The same rules as before are applied in these pairs except in 
(L, 1), where a particle on site L moves with probability 0 ~< p ~< 1 to site 
1 (if 1 was empty) and remains with probability 1 - p  on site L (again, if 
1 was empty): 

ZL(t + 1) = 1 with probability 

p~L( r) ~(t') + (1 - p )  ~L(r) 

z r ( t +  1 ) = 0  with probability (1.2) 

p [ 1  - ~L(t ' )  ~ ( t ' ) ]  + (1 - p ) r l  - ~ ( t ' ) ]  

r~(t + 1) = 1 with probability 

r l ( r )  + p r ~ ( r ) r l  - z~( t ' ) ]  

r ~ (t + 1 ) = 0 with probability 

1 - z l ( t '  ) -  p z c ( t ' ) [ 1  - zl(t ' )]  

In the mapping of ref. 3 this is equivalent to a two-dimensional, four- 
vertex model in thermal equilibrium with a defect line where a fifth vertex 
has nonvanishing Boltzmann weights. The two steps describing the motion 
of particles define the diagonal-to-diagonal transfer matrix in the vertex 
model (see Section 2). The pairing is chosen as in ref. 3, but the hopping 
probabilities are different. 

This limiting case of the anisotropic six-vertex model might appear not 
very interesting due the deterministic movement of the particles in the bulk. 
But it turns out that the defect causes particles to pile up (because of the 
hard-core repulsion) and, depending on the total density, to cause phase 
transitions between a low-density phase to a coexistence phase with a low- 
and a high-density region and finally to a high-density phase as in fully 
probabilistic models. The phase transitions from the coexistence phase to 
the low- and high-density phases are related by a particle-hole symmetry 
(see Section 2). 

Another surprise is its solvability, which cannot be expected from this 
defect-type boundary condition. So far, Bethe ansatz solutions for vertex 
models are known only for free boundary conditions with surface fields and 
for certain twisted toroidal boundary conditions depending on the global 
symmetry of the system. (:'~1~ In particular, Gwa and Spohn discussed a 
Bethe ansatz solution of a probabilistic fully asymmetric exclusion process 
with periodic boundary conditions and derived the large-L behavior of 
some of the energy gaps which are relevant for the dynamical scaling 
exponent for the stationary correlations of the noisy Burgers equation. (~2) 
In our case a Bethe ansatz calculation as in these known cases of boundary 
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conditions is not possible. However, we will show that judiciously chosen 
new basis vectors allow for a Bethe ansatz solution with a new kind of 
boundary condition on the Bethe wave function. The ansatz in this basis 
gives rise to Bethe ansatz equations different from those obtained in the 
case of the usual integrable twisted or free boundary conditions. 

The paper  is organized as follows. In Section 2 we discuss some of the 
symmetries of the model which help in finding this basis. Then, in Section 3 
we proceed to compute the eigenvectors to nonzero eigenvalues of the 
transfer matrix. Some of the calculations and proofs for this section are 
given in the Appendix. In Section 4 we study in detail the steady state and 
give an exact expression for the average occupation as a function of the site 
x on the ring of the blockage strength p. We establish the presence of a 
phase transition as announced above and compute the critical density as a 
function of p. In particular, we discuss the current, the density profile of the 
system, and the steady-state correlation functions in the various phases. In 
Section 5 we compare the phase diagram and density profile obtained in 
Section 4 with other asymmetric exclusion models with blockage and draw 
some conclusions. 

2, SYMMETRIES OF THE FINITE SYSTEM 

In this section we translate the model described above into the 
language of the six-vertex model following ref. 3, and discuss some of its 
symmetries. The transfer matrix derived below is used in the Bethe ansatz 
diagonalization in Section 3. 

Consider the six-vertex model on a diagonal square lattice defined as 
follows: Place an up- or down-pointing arrow on each link of the lattice 
and assign a nonzero Boltzmann weight to each of the vertices shown in 
Fig. 1. (All other configurations of arrows around an intersection of two 
lines, i.e., all other vertices, are forbidden.) The partition function is the 
sum of the products of Boltzmann weights of a lattice configuration taken 
over all allowed configurations. 

a 1 a~ bl b2 cl c2 

Fig. 1. Allowed vertex configurations in the six-vertex model and their Boltzmann weights as 
given in (2.1). Up-pointing arrows correspond to particles, down-pointing arrows represent 
vacant sites. In the dynamical interpretation of the model the Boltzmann weights give the 
transition probability of the state represented by the pair of arrows below the vertex to that 
above the vertex. 
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In the transfer matrix formalism up- and down-pointing arrows as 
shown in Fig. 1 in each row of a diagonal square lattice built by M of these 
vertices represent the state of the system at some given time t. Correspond- 
ing to the M vertices there are L = 2M sites in each row. The configuration 
of arrows in the next row above (represented by the upper arrows of the 
same vertices) then corresponds to the state of the system at an inter- 
mediate time t ' =  t +  1/2, and the configuration after a full time step 
t"- - - t+  1 corresponds to the arrangement of arrows two rows above. 
Therefore each vertex represents a local transition from the state given by 
the lower two arrows of a vertex representing the configuration on sites j 
and j +  1 at time t to the state defined by the upper two arrows represent- 
ing the configuration at sites j and j + 1 at time t + 1/2. The correspondence 
of the vertex language to the particle picture used in the introduction can 
be understood by considering up-pointing arrows as particles occupying 
the respective sites of the chain while down-pointing arrows represent 
vacant sites, i.e., holes. 

The diagonal-to-diagonal transfer matrix T acting on a chain of L sites 
(L even) of the general asymmetric six-vertex model with vertex weights 
al,..., c~ as shown in Fig. 1 is then defined by ~2) 

c/2 L/2 
T =  l-[ T2j. ]-[ T2j_, = TeVenT ~ (2.1) 

j = I  j = l  

The matrices Tj act nontrivially on sites j and j +  1 in the chain; on all 
other sites they act as the unit operator. All matrices Tj and T; with 
I J - J ' ]  ~ 1 commute. For an explicit representation of the transfer matrix 
we choose a spin-l/2 tensor basis where the Pauli matrix of. acting on site 
j of the chain is diagonal and spin down at site j represents a particle 
(up-pointing arrow) and spin up a hole (down-pointing arrow). In this 
basis z j=  �89 is the projection operator on particles on site j and 
s + =1 x__ iaf)(ax, y,z are g(O'i + the Pauli matrices) create ( s f )  and annihilate 
( s f )  particles, respectively. The matrices Tj in this basis are defined by (aiO0 T . =  0 cl b2 

J hi c2 

0 0 a 1 j,j+~ 

(2.2) 

The dynamics of our model is encoded in the transfer matrix by 
choosing the vertex weights as follows: 

bulk: a l = a 2 = l  b l = 0 ,  b 2 = l  c1=1,  c2=0  
(2.3) 

! ! ! t t _ t _ _  defect line: a l = a 2 = l  b~=O, b 2 = p  cl 1, c2 1 p 
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In the bulk this leads to 

(i ~176 
0 0 1 H +  1 

(2.4) 

In the particle language the matrices Tj describe the local transition 
probabilities of particles moving from site j to site j + 1 represented by the 
corresponding vertices. If sites j and j + 1 are both empty or occupied, they 
remain as they are under the action of Tj. The same holds for a hole on 
site j and a particle on site j + 1, corresponding to the diagonal elements of 
Tj, representing vertices a l ,  a2, and cl. If there is a particle on site j and 
a hole on site j + 1, the particle will move with probability one to site j + 1. 
This accounts for vertex b2. 

As discussed in the introduction, we assume periodic boundary condi- 
tions, i.e., we identify site L + 1 with site 1, but we consider a defect on the 
boundary allowing for vertex c2. In terms of local transition probabilities 
this means that we allow for a movement of particles with probability p ~ 1 
from site L to site 1. Therefore T/. is given by 

TL(p) = 1 + p[s + S~- -- %(1 -- 121)] = 

(i 001 
0 1 - p  

0 0 1 L,1 

(2.5) 

The transfer matrix T =  T(p) acts parallel first on all odd--even pairs 
of sites ( 2 j -  1, 2j), then on all even-odd pairs. Thus, in the first half time 
step T ~ shifts particles from the odd sublattice to the even sublattice (so 
far not occupied) and then, in the second half step, T . . . .  moves particles 
from the even sublattice to the odd sublattice again. As a result, we expect 
an asymmetry in the average occupation of the even and odd sublattices 
which is related to the particle current. In a model with transfer matrix 
T= T~ . . . .  the asymmetry will be reversed, but there will be no essential 
difference in the physical properties of these two systems. 

The limiting cases p = 0 and p = 1 play a special role. If p = 1 (no 
blockage), one has periodic boundary conditions and translational 
invariance, and we will denote the transfer matrix T(p = 1) by T P, while 
p = 0  (total blockage) corresponds to free boundary conditions with no 
interaction between sites L and 1. For  later convenience we denote 
T(p = 0) by T r. The matrix T(p) interpolates continuously between free 
and periodic boundary conditions; one has T(p)= p T e +  ( 1 -  p) T v. 
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Having defined the transfer matrix, we discuss some of its symmetries. 
We will denote by 

Ix,,x2 ..... x u ) = % % . . . s g l . )  

the N-particle state with particles on sites x~,..., x N ([") is the state with all 
spins up corresponding to no particle). The number operator 

L 

N =  Y, rj, IT, N]  = 0  (2.6) 
j = l  

commutes with T, splitting the transfer matrix into sectors of fixed numbers 
of particles. 

The parity operator P reflects particles with respect to the center of the 
chain located between sites x = L/2 and x = L/2 + 1 and is defined by 

PIxx,X2, . . . ,XN)=IL+I--XN, . . . ,L+I--x2,  L + I - - x l )  (2.7) 

The charge conjugation operator 

L 

C =  1-[ a ;  (2.8) 
j ~ l  

interchanges particles and holes and therefore turns an N-particle state into 
a state with L -  N particles. One finds 

[T, CP] = 0 (2.9) 

N and CP generate an 0(2)  symmetry of the transfer matrix that allows us 
to restrict our discussion to 0 <~ N<~ L/2. 

The conserved current associated to the conservation law (2.6) is 
obtained from the commutators of r2x and r:x_ 1 with T, which turn out to 
play a crucial role in the construction of the eigenstates of the transfer 
matrix in the next section. Defining the projector on holes at site x as 

o- x = 1 - Zx (2.10) 

and the current operators J2x'eVen, JL'even, and J2x-l:~ by 

�9 oad (all x) 
J 2x  - t ~ "C2x - 1 ~  

j . . . .  2 x  = (1 - -  ( 7 2 x _  l O 2 x ) ( 1 - - g 2 x + l " g 2 x + 2 )  

j ~ o n  = p ( 1  - -  ~ _  ~ ~ ) ( 1  - -  r~r:) 

(xCL/2) (2.11) 
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a straightforward calculation yields (x ~ L/2) 

ET, Z2x] = TEz2x- (1 -a2x_la2x) g2x+ 1 272x+ 2"1 
�9 even __ j odd 

= J 2x 2 x -  1 

I - T ,  ~ 2 x +  1 ]  ~" T[g2x+10.2x+2-g2x-10.2x--"C2x (2.t2) 

+ (1 - 0.2~- 1 0.2x) "C2x+ 1T2X+2 "[ 
: odd  -even 

= d 2 x + l  --J2x 

and at the boundary 

[T, zL] = TEzL -- (1 -- 0.L-10.L) Zt Z2] 

- -  ( 1  -- p )  TF(1 - -  0 . L -  1 0 . L ) ( 1  - -  ~ 1 % )  
(2.13) 

I-T, %] = T[Zl 0" 2 - -  "/7 L _  10 .L  - -  ~'L "}- (1 - o%_ 10.r) "61"122] 

+ ( 1 - p )  TF(1--0.L 1~L)(1--'C1"C2) 

From these commutation relations we obtain 

[-T~ "C2x -~- 272x+ 1 ] -r',r .odd "odd = lI, j zx+l -J2x_ l )  (all x) 

[T, zzx_l+Z2x'l=T(je2~n-j~'~2) (x:A1, L/2) 
(2.14) 

�9 [T, z L_ x+ zL] = T e .j~ven T.jL_2 

[T, Zl + Z2 ]= T.J 2.even_ T P.JL.even 

Current conservation implies that the expectation values of the current 
operators .even :odd  "even ( .-odd Jzx and J2x-1 do not depend on x, ( J 2 x ) =  J2x-1)  = 
const = j, and denoting the density of particles N/L by p, CP invariance 
gives j ( p ) = j ( 1 - p ) .  From the definition of the current operator JL in 
(2.11) we see that in the steady state j is bounded from above by p, but on 
the other hand, we expect it to increase with the number of particles in the 
chain. This already indicates the possibility of a phase transition for p < 1 
as the density increases. That a phase transition does indeed occur will be 
shown in Section 4. 

3. G E N E R A L I Z E D  B E T H E  A N S A T Z  S O L U T I O N  

We now turn to the task of finding the eigenvectors and eigenvalues 
of T(p). A few general remarks are in place. First it should be noted that 
T is not a symmetric matrix; therefore, one has to compute left and right 
eigenvectors separately. Left and right eigenvectors with eigenvalue A will 
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be denoted <AI and [A>, respectively, with the corresponding "wave 
functions" ~A(Xl,..., XN) and gta(x 1 ..... XN). They are defined by 

[A>= 
Xl ,..., x N 

<Al= 2 
X1,...,XN 

~r'cA(Xl,... , XN) IX1, X2 ..... X N )  

~ A(X1, .,,, X N ) ( X  1 , X2,..., XN[ 

(3.1) 

where <xl, x2,..., XN[ is the transpose of the column vector Ix1, x2,..., XN) 
in the sector of N particles. The sum runs over all different sets of 
coordinates {xl ..... XN}, 1 <<. Xi ~ L, in a chain of L sites. The wave function 
does not depend on the order of its arguments. 

Second, since T is a matrix of transition probabilities where the sum 
of all entries in each column is 1 for any value of p, Zm (T(p))m,n = 1, its 
largest eigenvalue is 1 with an (unnormalized) left eigenvector <1[. The 
corresponding unnormalized wave function is constant, q~l(Xl,..., xN)= 1 
for all configurations (x,,..., XN), 1 <~ Xi <<. L: 

( 1 1 =  E ( X I ' X 2  ..... XN[ (3.2) 
Xl ,..., x N 

This particular eigenvector does not depend on p. In what follows we will 
compute only right eigenvectors; the computation of the corresponding left 
eigenvectors proceeds along similar lines. 

Third, it should be mentioned that T is not fully diagonalizable, 
i.e., the number of linearly independent eigenvectors is smaller than the 
dimension of T. However, the subspace with nonzero eigenvalues is 
diagonalizable. That is, to each root A ~ 0 of the characteristic polynomial 
of T(p) there exists an eigenvector. It is easy to construct some eigenvec- 
tors to eigenvalue 0, but there is no complete set of eigenstates. We restrict 
our calculations to the set of eigenvectors with nonzero eigenvalue, since, 
from the physical point of view, these are the relevant ones. 

T P is a special limiting case of the general six-vertex model in the 
diagonal-to-diagonal transfer matrix approach, which can be solved exactly 
using the Bethe ansatz with a wave function 

N 
O(Xl  ..... X N ) = E  (--1)PbPl,. . . ,pN U Bpm(Xm) 

m=l (3.3) 

bl,..., N = H bran 
l ~ m < n ~ N  

This is a sum of products of N single-particle wave functions 

Bj(x,,,) = ~Fl(kj) exp ikjxm xm odd (3.4) 
(F2(kj) exp ikjx m Xm even 
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The two-body phase shift functions bran = b ( k m ,  k,) and the ratio F1/F2 are 
determined by the interaction between the particles. ~ The sum runs over 
all permutations ~=(Pl,'",PN) of the numbers (1,...,N) and ( - 1 )  e 
denotes the sign of the permutation. The N quantum numbers k m charac- 
terizing different wave functions with eigenvalues A=A(ka,...,ku)= 
A(kl)... A(ku) are determined from the boundary conditions imposed on 
the system. The existence of such a solution is due to the integrability of 
this system, leading to an infinite set of conserved charges in the infinite 
system. The transfer matrix of the generic (periodic) six-vertex model is 
soluble with this Bethe ansatz for a class of twisted boundary conditions 
and, with some modification, for free boundary conditions with certain 
surface fields, (2'11) but no solution in the case of the defect-type periodic 
boundary conditions considered here is known. We will show that in the 
fully asymmetric limit defined by the Boltzmann weights (2.3) the model 
even with this defect is soluble with a Bethe ansatz. 

In order to solve this problem, we will further study the implications 
of the symmetries discussed in the preceding section. This will allow us to 
identify an invariant right subspace of T(p) and to restrict the Bethe ansatz 
to this subspace. Properly chosen boundary conditions on the wave func- 
tion yield a solution to the problem and it turns out that the eigenvectors 
are still given by a set of quantum numbers kl ..... k u .  As discussed in the 
preceding section, CP invariance allows us to restrict ourselves to 
O<~N<~L/2. 

3.1. Periodic Boundary Conditions (No Blockage) 

The translationally invariant case p = 1 is most easily solved by noting 
the following: 

1. T e has an invariant (right) subspace with particles placed only on 
odd lattice sites. 

This can be proven as follows: Consider a state with only odd sites 
occupied. First, T ~ [See (2.1)] will move all particles to their neighbor- 
ing even sites since they were all vacant; then T . . . .  shifts this configuration 
again one site further, 

T P 12x l -  1 ..... 2XN-- 1)  = 12Xl + 1,..., 2XN+ t )  (3.5) 

SO that the resulting state still has particles only on the odd sublattice. 
On this subspace of dimension 

dN(L)=(L/N2 ), (O<-NN<~L/2) (3.6) 
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T P acts as translation operator, causing all particles to move with the same 
velocity around the ring, and the eigenvalues are 

A n = exp(4~in/L), 0 <~ n <~ L/2 - 1 (3.7) 

All eigenvalues are degenerate in each sector with fixed N (but 
N#O, 1, L / 2 -  1, L/2) since any vector of the form 

L / 2  - -  1 

IAn>= Y, 
j = 0  

Aj I2x ~ - - I+2 j ,  2x2--1+2j,...,2XN--I+2j) (3.8) 

has eigenvalue An. [There is no degeneracy in the special cases N =  0 (no 
particle) and N =  L/2 (all odd sites occupied), since the dimensions of these 
subspaces are do(L)= dL/2(L)= 1, and in the cases N =  1 or N =  L / 2 - 1  
where the dimensions are dl(L) = dL/2_ I(L) = L/2. In the latter case each of 
the eigenvalues (3.7) occurs once.] 

Furthermore, we find: 

2. The eigenvectors obtained in this way are the only eigenvectors 
with A r 0. 

In the Appendix we prove that if p = 1, 

r2xCrZy_~[A)=0 if Ava0 (3.9) 

This proves that any eigenfunction 7*(xl,..., xN) not vanishing for all even 
xi must have eigenvalue A = 0: Suppose ~(xl,..., 2x,..., XN) ~ O, i.e., there is 
a particle on an even site 2x in some state contributing to [A ). Then (3.9) 
can be satisfied only if all L/2 odd sites in this state are occupied as well. 
This means that N >  L/2, in contradiction to the assumption N<~ L/2. 

A Bethe ansatz calculation would give the same result, of course, with 
F2(km) = 0 [see (3.4)] and the constants bmn defined in (3.3) arising from 
the interaction left undetermined. The eigenstates can be considered as sets 
of noninteracting particles with fixed relative distances all moving around 
the ring with constant velocity 1. All these "frozen" states have one internal 
degree of freedom, leading to the excitations (3.8) with momentum 41rn/L. 
The interaction between particles on the odd and even sublattices account- 
ing for a nontrivial behavior of the system is, so to speak, hidden, because 
it is such that all particles are forced onto the odd sublattice. States with 
particles on the even sublattice have eigenvalue 0 and therefore decouple. 

Expectation values ( O )  of operators O in the steady state are defined 
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by (11 O I1 ) / (111  ), where (11 and l1 ) are the linear combinations of all 
eigenvectors with eigenvalue 1 with equal weight. 2 (1L is given by (3.2) and 

I1>= ~ 12x1-l ,  2x2 -1  ..... 2XN--I> (3.10) 
x I , . . . ,  x N 

In particular, for the current (2.11) one obtains 

j -" �9 odd  =~,J2x 1 )=( z2x -~>=2N/L=2 p  (P<~�89 (3.11) 

3.2. Free Boundary Conditions (Full Blockage) 

If p = 0, the system is even more trivial than in the translationally 
invariant case. All particles are moved to the boundary, where they get 
stuck and pile up. There is only a single eigenvector with A v a 0, the steady 
state 

I 1 ) = I L - N , L - N +  I,...,L) (3.12) 

with eigenvalue A = 1. No current is flowing, j = 0, independent of p. 

3.3. Partial Blockage ( O < p < l )  

Here the system shows nontrivial behavior. However, it turns out that 
the commutation relations (2.12) and (2.13) generate a large number of 
relations between the amplitudes T(Xl ..... XN) for different arguments 
(xl ..... XN). In the Appendix we prove that the wave function with k of its 
N arguments even (here labeled by 2xi) is given by the wave function of N 
odd sites (labeled by 2y,. + 1): 

~tA(2X 1 . . . . .  2X~, 2yl + 1,..., 2YN--k + 1) 

= �9 2(2xl,..., 2xk, 2yl + 1 ..... 2yu_k+ 1) 

x ~ ( z y ~ + l  ..... 2y~+1,  Zy~+ l  ..... 2 y ~ _ ~ + l )  (3.13) 

where A r 0 is assumed and 

Yi = L/2 - x i (3.14) 

2 This definition is arbitrary and corresponds to a special choice of initial condition in the 
averaging. We select this particular state since it is the one obtained from the nondegenerate 
perturbed steady state (p ~ 1) by adiabatically switching off the perturbation (p~ 1, see 
below). 
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Z(xI,..., XN) is a step function taking the values 0 or 1 and is defined by the 
rules 3A-3D below. In formulating these rules we adopt the following 
language. If any of the arguments x i of Z takes a specific (even or odd) 
value x, 1 ~< x ~< L, we say there is a particle at site x (because in this case 
Z is part  of the amplitude of a state with site x occupied). On the other 
hand, if none of the arguments takes this specific value, we speak of the 
presence of a hole at site x. In this terminology Z(xl,..., XN) is defined as 
follows: 

3. X = 0 if and only if there is a particle on an even site 2x and one 
of the following conditions holds: 
A. There is a hole on site 2y + 1, with 2 ~< 2x < 2y + 1 4  L -- 1. 

B. There is a particle on site L + 1 - 2x, with 2 ~< 2x ~< L. 

C. There are holes on site 2 y +  1 and site L - 2 y  with 
2 ~ < 2 x ~ < L - 2 , 2 x < 2 y + 1 4 L - 1 .  

D. 2 4 2 x < . L - N .  

These rules together with (3.13) define a new invariant subspace of 
dimension d u ( L )  as given in (3.6). 

Straightforward calculation shows that the wave function with all its 
arguments xi odd, but 

(Xl,..., x u ) ~  (1, 3,..., 2 j -  1, xj+ ~,..., x.~-2s, L - 2 j +  1 ..... L - 3 ,  L -  1) 

for some j, 1 ~<2 j -  I ~ < N -  1 

can be found from an ansatz 

~JA(Xl ..... XN) = BA(X  1 ,..., XN) (3.15) 

where BA is a Bethe wave function (3.3) of an eigenvector with eigenvalue 
N 

A = 1-[ A , , ,  A m = exp - 2ikm (3.16) 
r n = l  

and with boundary conditions 

BA(1, 3 ..... 2 j - -  1, Xj+l ..... XN--2j, L - - 2 j +  1 ..... L - 3 ,  L -  1) 

= p - S A J B A ( 1 , 3 , 5  ..... 4 j - - l ,  x j + l + 2 j ,  .... x N 2i + 2j) (3.17) 

In Eqs. (3.15) and (3.17) we assume the arguments of B to be ordered, 
l ~ < x l < x 2 <  ... < X N ~ L - - 1 .  

The phase shift functions bmn defined in (3.3) are given by 

b,,, ,= l - A m  ~ (3.18) 
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and Fl (km)= 1, Fz(km)=0 for all m. As in the usual Bethe ansatz, the 
boundary conditions give rise to a set of equations determining A m ,  

m = l  ..... N: 

P A m L / Z = [ 1 - ( 1 - p ) A m l ] ( - 1 )  u-1  ~I bran ( 3 . 1 9 )  

m = l  bnm 

We see that changing the interaction in a single lattice site is sufficient to 
"revive" the interaction between nearest neighbors on the even and odd 
sublattices which is hidden in the translationally invariant case. As a 
consequence, the phase-shift functions (3.18) arising from this interaction 
are no longer undetermined and the system shows nontrivial behavior. 

Equation (3.19) represents a set of N equations for N unknown 
quantities A m ---exp - i k  m involving powers of L/2  of A m. One solution is 
easy to find; it is the steady state with 

A ( k  1,..., ku) = A 1 . . . . .  A N = 1 
(3.20) 

O(x I ..... XN) = 1 

for 

(Xl,. . .  , X N ) ~  (1, 3 ..... 2 j -  1, xj+ 1 ..... XN_2j , L - - 2 j +  1 ..... L - 3 ,  L -  1) 

and (3.21) 

BA(1, 3 ..... 2j-- t, Xj+l ..... XN 2j, L - 2 j + I , . . . , L - 3 ,  L - 1 ) = p  - j  

Other solutions have A m ~ 1, A m --I= An for all m, n. For  p # 1 the state with 
eigenvalue 1 is nondegenerate. 

4. DISCUSSION OF THE STEADY STATE 

4.1. Computation of the Average Occupation Number 

Rule 3D states that ~ 2 x t A ) = 0  for 2 < ~ 2 x < ~ L - N .  Therefore the 
steady-state current j =  (22~ 1 - Z 2 x  122,) [see (2.11)] is equal to the 
average occupation number (Zzx-1)  on the odd sublattice in the range 
1 ~< 2 x - 1  ~< L - N .  In this area particles move with velocity 1. Current 
conservation and the upper bound on the current discussed in Section 2 
imply that also the density in this region is constant and bounded from 
above by p. On the other hand, in the region L - N < 2x - 1 <~ L - 1 one 
has ("C2x_l"gZx) ~ 0 and consequently ( % x - 1 ) > ~ J .  Here the defect causes 
the particles to move with average velocity less than 1 and one observes a 
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nontrivial density profile. In order to study these two areas, we compute 
the average occupation number n(x) = ( l l  % [1 }/(111 }. 

First we have to compute ~L,N(P)= (111 }, which because of the form 
of the left eigenvector ( l l  of (3.2) is just the steady-state wave function 
summed over all its arguments, 

~,N(p)----(II1}----  ~ ~gl(xl ..... XN) (4.1) 
Xl ,..,, XN 

It is convenient to normalize the right eigenfunction by taking 
B(2xl - 1,..., 2x N -  1) = wN [with (2x I -- 1, 2x N -- 1) r (1, L - 1)] instead of 
B ( 2 X l -  1,..., 2x N -  1)=  1 as in (3.20). As a result of this normalization, the 
steady-state wave function contains only positive powers of p. Evaluating 
(4.1) then amounts to counting the multiplicity of all powers of p up to pN 
in this sum, which is a combinatorial problem. 

One way of solving this problem is to group the amplitudes 
~1(xl,..., XN) into sets distinguished by their number j =  k/2 of pairs of 
particles, which are defined as follows (0 ~< k ~< N): We consider as a 0-pair 
any ordered, purely odd configuration (xl < x2 . . .  <XN) with xl # 1: 

k = 0: (x~ ..... XN), Xl r 1 (4.2) 

while 1/2-pairs are the ordered configurations (x i odd) 

(1, xl ..... X N - 1 ) ~  
k = l :  (xl ..... X N _ I , L ) J  X l ~ l  and X N _ I ~ L - - 1  (4.3) 

The 1-pairs are all ordered configurations (xi odd) 

(1, xl ..... XN_2, L - -  1) t 
k = 2 .  (x~,...,XN_2, L _ I , L  )~ x 1 r  (4.4) 

while 3/2-pairs are the ordered configurations (x,. odd) 

(1, 3, X1, . . .  , XN_3, L--  1) 

(3, xl,..., XN_3, L--  1, L) | % X 1 :~ 1, 3 (4.5) 
k = 3 :  (1, x~,...,Xu_3, L - 2 ,  L - 1 ) |  and X N _ 3 r  

/ 
(Xl,..., XN-3, L -  2, L -  1, L ) )  

The 2-pairs are the ordered configurations (again, xi odd) 

(1, 3, xl ..... XN_4, L - 3 ,  L - 1 )  ) 

(3, Xl, . . . ,x N 4, L - 3 ,  L - 1 ,  L) 
k = 4 :  (1, X~,...,XN 4, L - 3 ,  L - 2 ,  L - 1 )  X l #  1, 3, 5 (4.6) 

(xl ..... XN 4, L- -3 ,  L - 2 ,  L- -1 ,  L) 
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Higher k/2-pairs are constructed analogously. We see that there are 2 m 
different kinds of k-pairs with k = m -  l/2, l = 0, 1. They are distinguished 
by the arrangement of particles on even lattice sites. The number s k of 
each kind of k/2-pair given by all possible arrangements of particles 
(X 1 ..... XN_k) on the unspecified odd sites is 

According to (3.13), which expresses the amplitudes with some 
arguments even in terms of amplitudes with purely odd arguments, the 
total contribution of all such 2 m kinds of pairs of type k to ~L,N(P) is 
pN--k. Adding over all pairs of type k, one finds 

~L,N(p)_ ~ ~ ( L / 2 - N - l  +k)p~ (4.8) 
k = 0  k 

It is convenient to define the quantity ] ) k = S N _ k P  k and to introduce the 
incomplete fl-function 

R 

Ii_p(L/2-N, R+ 1)=  (1 _ _ p ) L / 2 - - N  ~ 7k 
k = O  

=(1- -p)L/2- -u  ~ pk(1 
k = O  

= (1 --p)L/Z--NfL, N(R; p) (4.9) 

In terms of this function one has '~L,N(P) =fL, N(N; P). 
In the same way one can obtain an expression for 

(~L,N( x; P) -~ ( I I Zx I 1 ) = ~ ~r-tl(Yl ,..., YN--1, X) (4.10) 
Yl,...,YN l 

(Remember that the value of the wave function gt does not depend on the 
order of its arguments.) In order to compute f#c,u(X; p), one considers the 
same groups of amplitudes and counts powers of p with the additional 
restriction that one particle occupies site x. Taking x = L - 2 m ,  the result 
is 

N - - 2 m - -  1 

~gc, u ( L - 2 m ; p ) = ( 1 - p )  ~ 7k (4.11) 

while for x odd, x = L -  2 m -  1, one obtains 

CffL, N(L-- 2m-  1; p ) =  

k = O  

N - - 2 m - - 2  N - - 1  

7 k + P  Z 7k (4.12) 
k = O  k = m a x ( O , N - - 2 m - -  1) 
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Equations (4.11) and (4.12) can be written in closed form, 

s i n ; x  fL, N(N-- NC, N(X; p)= P 1; p) 

+ (1 --p)fL, N(N--L-- 1 +X; p)  (4.13) 

So with n(x) = fgz, N(x; P)/~,~v(P) and f(o)=fL, N(N__ 1; P)/fc, u(N; P) we 
obtain an exact expression for the occupation number n(x), which is the 
main result of this subsection: 

n(x )=p l s in ( ; x )  f (~  
fL, N(N; p) (P <~ ~) 

(4.14) 

The first quantity in this expression vanishes on the even sublattice and is 
constant on the odd sublattice. It reflects the anisotropy between the even 
and odd sublattices in this model. The second part describes the density 
profile; it is 0 for x ~ < L - N .  Since for I ~ < 2 x - I ~ < L - N  one has 
j = n(2x- 1), we find the current 

j=pf(O)= fL, N(N--1;P) 
P ~ ; P i  (4.15) 

Due to CPinvariance (2.9), the average occupation number at density 
p = NIL satisfies n 1 _p(x) = 1 - np(L + 1 - x). 

4.2. The Phase Diagram 

Having found the density distribution along the chain, we are in 
a position to determine the various phases of the system. We start by 
discussing some special cases which are easy to derive from (4.9). If p = 1 
(no blockage), one has 

j = f ( 0 )  fL, N(N--1;1) [L/2--1"~/[L/2"~ 2 
-- f r ,  u ( U ;  1) --~ N--I )/~ S ) =  p (4.16) 

and the density n(x) = [sin(�89 f(o) is uniform, but different on the even 
and odd sublattices, 

n(x)={20P xOddx even (4.17) 

822/71/3-4-9 
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On the other hand, if p = 0  (full blockage), then j = 0  and the average 
occupation number is a step function, 

n(x)=(10 x>L-Nx<<.L_N (4.18) 

These two results were already obtained in Section 3. 
Three more special cases are the two trivial limiting cases p = 0 and 

p = 1 and the half-filled system p = 1/2. For p = 0 we have n(x)= 0 and for 
p = 1 we have n(x)= 1. In both cases the current is zero. For the half-filled 
system, Eq. (4.9) gives fL, L/z(R; P) = 1 if R >~ 0 and fL, L/z(R, p)----0 if R < 0. 
The resulting current is j = p and one obtains the density profile 

] x even, 2<<.x<~L/2 

n(x)=  0p xodd ,  l<~x<<.L/2-1 (4.19) 
- p  xeven, L / 2 + 2 4 x < ~ L  

xodd,  L/2 + I <~ x <~ L - 1  

Here for any value of p the system is in a coexistence phase with a 
low-density region, x <<. L/2, and a high-density region, x > L/2. 

From these examples we can already recognize the three different 
phases of the system and qualitatively draw the phase diagram. There is 
a low-density phase (I), a coexistence phase (II), and, through the par- 
ticle-hole symmetry (2.9), a high-density phase (III) (see Fig. 2). Restrict- 
ing ourselves to p~<1/2, we find that at p = 0  the system is in the 
coexistence phase, while at p = 1 it is in the low-density phase, independent 
of p. Note that in all these special cases the shape of the density profile 
does not depend on the size of the system. 

In order to determine the phase transition line separating phases I and 
II, we consider the continuum limit L ~ ~ ,  p and p fixed. We denote 
s =k /N  and 7k = ~(s). First we notice that 

~k p [2p - 1 1 "~ 

= (1+1-2p5 
2ps J + O ( 1 )  (4.20) 

and therefore y(s) has a maximum at 

p 1 - 2 p  
s~ - 2p 1 -  p (4.21) 
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1 ~ (III) 

0 
p 

Fig. 2. Phase diagram of the model in the p-p plane. Region I is the low-density phase, 
region II the coexistence phase, and region III the high-density phase. The phases are 
separated by the curves p = p/2 and p = 1 -p/2,  respectively. The dashed line p = 1/2 marks 
the half-filled system, which is in the coexistence phase for all p < 1. The lower and upper 
half-planes in this diagram are related by the particle-hole symmetry (2.8). 

To  the normal iza t ion  ~,N(P) of (4.8) only those 7(s) with 0~<s~<l  
contr ibute,  so the largest 7 contr ibut ing to ~L,N(P) is "y(1)= 7N i fp />  2p (in 
this case the m a x i m u m  So/> 1 is outside the range 0 ~<s ~< 1) and V(So) if 
p < 2p. I f  L becomes very large and 1 ~ N, 1 ~ L / 2 -  N, one obtains  f rom 
Stirling's formula  

(1 - - 2 p )  u2 

7(s) - (~L)1/2 [ 1 - (1 -- s) 2p ] v2 (2ps)1/2 

[ ( p ~  2ps E 1 --(1 -- s) 2p ]1-(1-s)Zp]r/2 
x [_\2ps /  -(-~---2-~1_--T~; _ (4.22) 

( 1 - 2 p )  1/2 [ ( p ) 2 O  ( 1 - 2 p ) 2 0 - 1 ~  L/2 

7(1) - ( ~ Z ~  (-5~-p)1/2 L \ 2 p /  
(4.23) 

J 

and 

1 - p  
7(so) = (~L)~/2 Ep(1 - 20)32/2 [(1 - p)2O- qL,,2 (4.24) 

We first discuss the case p > 2p. In the con t inuum limit L ~ oc the 
quanti t ies ?(s)/y(1) vanish for s < 1 if the difference 1 - s  is larger than  of 
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order 1/L. Therefore, only the quantities 7(s) with s infinitesimally close to 
1 give a contribution to the sum fL, N(N--L--1 +X; p) appearing in the 
expression for the density profile (4.14). After rescaling the length of the 
chain to 1 and defining the scaled distance r from the boundary as 
r= (L-x)/L we arrive at the conclusion that the rescaled average 
occupation number ~(r)=l imL_~o n(L-Lr) vanishes for all finite (i.e., 
noninfinitesimal) distances r on the even sublattice and becomes a 
constant ~ = 2p on the odd sublattice (we keep p = NIL fixed). This is the 
low-density phase (I) with 

j= pf(O) = 2p (4.25) 

The total density on the even sublattice vanishes, 

L/2 
p . . . .  = lim 2/L ~ n ( 2 x ) = 0  (4.26) 

L ~ o o  
x = ]  

while 

L/2 

podd= lim 2/L ~ n(2x- 1 ) = 2 p  (4.27) 
L ---~ oo 

x ~ l  

However, if p is smaller than 2p (phase II), then the 7(s) with 
s infinitesimally close to So give nonvanishing contributions to 
fL, N(N--L--I+x;p) in (4.14) and consequently ~(r) will jump at 
r o = p(1 -So)  from p to 1 on the odd sublattice and from 0 to 1 - p  on the 
even sublattice. In this phase one finds 

j = p (4.28) 

and 

p . . . .  = (1 - p) ro = �89 - p) 

p o a a = p ( l _ r 0 ) + r  0= �89  
(4.29) 

The curve p = 2p marks the phase transition between phases I and II and 
we denote the critical density p = p/2 by Porit. 

The phase diagram in the j-p plane is given in Fig. 3. Note that a 
similar phase diagram was obtained numerically in ref. 8 for a fully 
probabilistic asymmetric exclusion process. At fixed blockage strength p the 
current j increases in phase I with the density, j = 2p, until the critical den- 
sity is reached with j = p. Further increasing the density does not change 
the current until the density approaches its upper critical value /Scrit = 
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1 

F o r  

J 

(I1,(III) 

0 
p 

Fig. 3. Phase diagram of the model in the j-p plane. The curve j = p represents the 
coexistence phase II, where pleft = 1 - - P r i g h t .  In the area below one has p~at=pnght corre- 
sponding to the asymptotically uniform phases I and III [see (4.31)]. The system cannot be 
stationary in the region above j = p  since the blockage imposes an upper bound p on the 
current the system can support. 

1 - -Pcnt  and  the system enters  the uni form high-dens i ty  phase,  where 
j = 2 ( ~ - p ) .  Tak ing  the average occupa t ion  n u m b e r  between ne ighbor ing  
sites ~ ( 2 x ) = [ n ( 2 x - 1 ) + n ( 2 x ) ] / 2 ,  we define in the con t inuum limit  

Plert = fi(r), 0 < r < ro, and  Pright = / ~ ( r ) ,  ro < r < 1. In  the three phases  one 
has 

Plef t  ~ P r igh t  ~ Pcr i t  

Pleft = 1 - P r igh t  ----- 1 - Pcrit 

/9left = P r i g h t  ~> 1 - -  Pc r i t  

phase  I 

phase  II  

phase  I I I  

(4.30) 

4.3. Density Profile in Finite Systems 

N o w  we turn  to a discussion of  the densi ty  profiles in phases  I and  l I  
in large bu t  finite systems. T h r o u g h o u t  this subsect ion we assume tha t  
0 < p <  1/2 and  0 < p <  1. 

4.3.1. Low-Density Phase p > 2p. We assume that  the system is 
not  close to the phase  t rans i t ion  line p = 2p and  therefore  quant i t ies  of 
o rde r  (2p/p) u are exponent ia l ly  small  in N and  are neglected in all calcula-  
t ions below. We first compu te  the current  j = ( Z z x - 1 ) -  ( v 2 x - i z 2 x ) .  This 



492 Schiitz 

quantity is independent of x and by choosing x = 1 turns out to be the 
anisotropy pf(Ol between the two sublattices, 

fL, N(N-- 1; p) 
J=P ~ p i  -P 

Up to order 1/L one obtains 

fL, N(N; P) ~ Y._.~k 

])N k=O ])N 
d...a 

N ~(2p~k 2[1-2pk(k  
k=O 

(__ = P 1 2 2p(1 
p--2p L ( p -  2p) 2 

1 ))N 
fL, u(X; Pi) (4.31) 

(4.32) 

Together with (4.31), this gives 

1 _l-p) 
j = 2 p  (1 Lp--2pJ (4.33) 

In order to compute the density profile near the boundary x--=-L, we 
set x = L - y  and obtain 

fL ,~v(N-L- l+x;P)=( l_  ;)N ~ ])N--k~ 
fL, N(N; p) fL, N(N; P) k=O ]]U /t 

We find that in the low-density phase the density profile decays exponen- 
tially with the distance from the blockage (see Fig. 4) on a length scale 

Up to order I/L the profile is given by 

n(L- y) = 

' 2 1 - p  

2 1 - p  
2p(1  L p - 2 p ) s i n ( ; Y ) [  

+ ( l - p )  , O<~y<~N-1 

(4.36) 
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7Z 0 .4  

o.81~ I- . . . .  t . . . .  I - - ~ ~ ~  ~ ' ' 

O. 6e.- 

0 .2  

0 . 0  . . . .  I . . . . . . . .  r . . . .  I , , ,  
i00 200 300 400 500 

X 

Fig. 4. Density profile in the low-density phase with blockage strength p = 0.6, p = 0.25, 
in a chain of 500 sites comppted from (4.15). The lower curve is the profile on the even 
sublattice, the upper curve is the profile on the odd sublattice. 

The average density on the even sublatt ice n . . . .  is of  order  1/L: 

2 r/2-1 2 2 p ( 1 - p )  
p . . . .  = -  ~ n ( L - 2 y ) =  (4.37) 

L L p - 2 p  y = 0  

4.3.2. Phase T rans i t ion  Line p=2p .  As p approaches  2p the 
inverse decay length { *=ln(2p/p) vanishes. In order  to analyze the 
density profile on the phase  transi t ion line, we have to s tudy the behavior  
of the incomplete  fl-function (4.9) for L, N large. Define the functions Zr 
and ar with r < p  by 

7 2 = L  ( 1 - 2 p ) l n ( 1  p)(1 2r) ~ - ( 2 p - 2 r ) l n  2p-2r  
- r - -  - -  p(1 

- 2 In (1 - 2p)(2p - 2r) 
(1 - p)(1 - 2r) 2 (4.38) 

and 

2 ( 2 )  1/2 4p- - l - r  ( 4 . 3 9 )  

ar='3 [(1 --2p)(2p--2r)(l - - 2 r ) ]  u2 

together  with the convent ion  that  Zr is the posit ive root  of  the r.h.s, of  
(4.38) i f p  < ( 2 p -  2 r ) / ( 1 - 2 r )  and the negative root  otherwise. Fo r  large L 
and if [zr/arl ~ 1 (if zr is negat ive)  or  if Zr > 0, the incomplete  fl-function 
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I~ p(L/2-  N, N -  rL) 
probability integral 

[see (4.9)] is given up 

p(Zr ) = I ~zr e -t2/2 dt 
(2n) v2 J_ 

to order L 1/2 by the 

(4.40) 

In particular, for p = 2p one obtains 

E 1 z~=L ( 1 - 2 r ) l n ~ _ 2 r + ( 2 p - 2 r ) l n  

- 2 1 n  p - r  
p( 1 - 2r) 2 

(4.41) 

and Zr negative for r > 0. Furthermore, for r = y/L, Zr reduces to quantities 
of order y2/L, i.e., Zr= 0 for finite y in the limit L ~ oe: 

2 1 - 4p 2y 2 1 - 2p y + ~ 0 (4.42) 
ZY/r - p L p L 

From these considerations we obtain the critical current 

j c=p  P(zo) p+O(L_1/2) (4.43) 
P(z_ 1/L) 

since P(Z--I/L) ~ P(Zo) = P(0) = 1/2. 
Approaching the critical line from the low-density phase and keeping 

the ratio of the decay length r of (4.35) to the size L of the system finite, 
one obtains in the limit L ~ oe 

2 (4.44) ZylL oc fylL(~tL) 4-' 
Thus the current approaches its critical value as a power law 

j _ j ~  P (Z-1/L --Zo) exp(--z2/2) oc 4 -1/2 (4.45) 
P(z-1/L) 

Setting x = L - y ,  the density profile is flat for finite y, up to 
corrections of order L -1/2. For large distances, y = uL 1/2, the profile n(u) is 
given by 

(~z ) P(zy/D 
n(u)=p sin ~ y  + ( 1 - p )  p(z X/L) 

= p  sin ~ y  + ( l - - p )  (4.46) 
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4.3.3. Coex is tence Phase p < 2p. When p < 2p the quantity zr 
diverges in the large-L limit to + oo. Therefore  one has for some finite 
(noninfinitesimal)  value r 0 -  A 

P ( Z r ) = P ( z _ I / L )  = 1 (O<r<ro--A)  
(4.47) 

P(zr) = 0 (r o + A < r < p) 

with correct ions exponent ial ly  small in L. For  the current  we find 

J = P P(z_ 1/L) P (4.48) 
P(zo) 

As a result of Eqs. (4.47) there is a low-density region with a flat 
profile given by 

n(x)=p s i n ( ; x )  ( X < X o - A )  (4.49) 

coexisting with a high-densi ty region with flat profile 

n(x)=p s i n ( ; x )  + l - p  (X>Xo+A) (4.50) 

The  interface of  width 2A between the low- and high-density regions 
is centered at the distance L - x o  = Yo =Lro = Lp(1-so)  f rom the bound-  
ary  as determined in the previous subsection. One  has Zro = 0; therefore the 
density profile near  Y0 is constant  in a finite area  a round  Yo (up to order  
L-1/2).  Choos ing  2 =  y o - x = ~ L  m, we obta in  the shape of the interface 
f rom (4.46) with u replaced by ~ (see Fig. 5). 

1 , 0  , , , 

0 - 6  i 

7% 0.4 ~ 

0.2~ 

# 

. . . .  I . . . .  I , , . ,J / ,  I . . . .  
100 200 300 400 500 

X 

Fig. 5. Density profile in the coexistence phase with blockage strength p = 0.6, p = 0.4, in a 
chain of 500 sites computed from (4.15). The lower curve is the profile on the even sublattice, 
the upper curve is the profile on the odd sublattice. 
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For the width A, (4.46) gives 

A ~ L ~/2 ( p # l / 2 ,  p r  (4.51) 

If p = 1/2, the approximation (4.40) is not valid. In this case, however, we 
already know from the density profile (4.19) (for p = 1/2) obtained in the 
previous subsection that A = 0. The density profile (4.18) in the case p = 0 
(full blockage) also gives A = 0. 

4.4. Steady-State Correlation Functions 

The rules for the construction of the eigenvectors of the transfer matrix 
3A-3D and Eq. (3.13) contain far-reaching implications also for the 
(unnormalized) steady-state density correlation functions 

~L,N(Xl,..., Xn; p)  = (1[ "Cx~ ...'Cx. 11) (4.52) 

Rule 3A [see also (A.2) in the Appendix] states that if there is a particle 
at site 2x in a state contributing to the steady state, then all odd sites 
2 x < 2 y +  1 < 2 L  must also be occupied. This implies for correlation 
functions of at least one even argument 

fqL, u(Xl, . . . ,xn;p)=fqL, u (2y l - -1  ..... 2yk-- 1, 2y, ..... 2ym;p) (4.53) 

In this expression the set of even sites {2yl,..., 2ym} denotes all even sites 
in the set {xl ..... x,} and 2y, is the lowest one. The set {2yl - 1,..., 2yk -- 1 } 
a r e  all odd xi, x ;e  {xl,..., x,}, which are smaller than 2y~. 

Equation (3.13) relating wave functions with some even arguments to 
wave functions with only odd arguments and rules 3B-3D imply more rela- 
tions on the n-point correlators. Here we focus on the two-point function. 

For the two-point function (4.53) reads 

~L.N(2X, 2 y + I ; p ) = ~ L . N ( 2 X ; p )  ( 2 < . 2 x < 2 y + l < L )  (4.54) 

Using rules 3B and 3C [see also (A.7) and (A.8) in the Appendix] one gets 

~L,N(2X- 1, 2y; p) = {i ~L'N(2y; p) 
( L - N < 2 y < L - 2 x  

~ L - 1 )  

( 2 y = L - 2 x + 2 )  

(4.55) 

Current conservation finally yields 

~L,N(2X- 1, 2x; p) = ~L,N(2X -- 1; p )  - - j  (1 <~2x-1  ~ < L - 1 )  (4.56) 
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The remaining correlator between sites on the even and odd sublattices 
{ffL, N(2X--1, 2y; p) in the range defined by L-N<2y<~L and L-2y+  3 
~<2x-1  ~< 2 y -  3 can be computed like the one-point function from the 
contribution from the various pairs defined above. The result is 

6ffL, u(ZX --  i ,  2y; p) 

=(1--p)[pfL, u(N--L+2y--2;p)+fL, N(N--L+2x--2;p)] (4.57) 

Defining the normalized correlation function by 

(TxTy) = ~L,N(X, y; p)/o~,N(p) (4.58) 

we can express all the density correlators (4.54)-(4.57) in terms of the one- 
point function ( z x ) =  n(x) [see (4.14)] in the following way: 

(T2x-- 1152y ) 

' p< ~2y) 
0 
('C2y_l)--j + (1-- p) 

x ( ( z ~ _ , ) - j )  

(z2e 1 ) - - J  

(1 ~ 2 x -  1 <~L-2y- 1) 

( 2 x -  1 = L - 2 y +  1) 

( L - 2 y + 3  ~ 2 x -  1.%<2y-3) 

(2x-- 1 = 2 y -  1) 

(2y+  1 ~<2x-  1 ~ < L -  1) 
(4.59) 

From (3.13) and rule 3D one obtains for the correlation function on 
the even sublattice 

fr 2y;p)={~--p)fgC, u(2X;p) (L-N<<.2x<~L) 
' (2 ~< 2x ~< L - N -  1 ) (4.60) 

which implies 

('C2x'C2y)=(1--p)('rZx) (2<~2x<~2y<~L) (4.61) 

The remaining correlators are ~L,N(2X--I, 2y--1;p) on the odd 
sublattice, which can be obtained by counting the contributions from each 
pair. In range I defined by 1 ~< 2x - 1 ~< L - 2y + 1 the result is 

f~L,u(2X-- 1, 2y--  1;p) 

=p2fL, N(N--2;p)+p(1--p)fL, u(N--L+2y--2;p) (I) (4.62) 

and in range II defined by L - 2 y  + 1 < 2 x  - 1 < 2 y  - 1 one obtains 

~L,N(2X-- 1, 2 y -  1;p) 

= p2fL, N(N--2;p)+p(1--p)fL, N(N--L+2y--3;p) 

+(1--p)fL, N(N--L+2x--2;p) (II) (4,63) 
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Thus also the density correlation function involving two odd lattice sites 
can be expressed in terms of the one-point function and another constant 

We obtain 

~E2x_ i%2y_ i ~ 

0~2 = fL,  N ( N - -  2; P ) / ~ r , N ( P )  (4.64) 

"p2a2 + p((%y_ 1 ) --J) 

p2~2 + p(.c2y_ 2 ) 

+ ( % x  , > - - J  

(1 ~<2x- 1 < ~ L - 2 y +  1) 

( L - 2 y  + 1 < 2 x -  1 < 2 y -  1) 

(4.65) 

These relations allow us to obtain simple exact expressions for the 
connected two-point function 

n ( x l ,  x2) = ( zx l  Zx 2 > - (%1>(%2> (4.66) 

and their large-L behavior. On the even sublattice (4.61) gives 

n(2x  1, 2x2) = n(2xl)[ 1 - p - n(2x2)] (2x2 > 2xl) (4.67) 

If the system is in the low-density phase, the density n ( L -  2y) decays 
exponentially with increasing distance 2y from the boundary [cf. (4.34)]. 
Defining the relative distance r by r = 2x2 - 2xl > 0, we obtain for L large 

(-~)2yl+ 1 [ (-~p~) 2y2 + 11 
n ( L - -  2y,, L -  2y2) = (1 - p ) 2  1 -- 

= A(y2) e-'/r (4.68) 

with the decay length r of (4.35) as correlation length and a space- 
dependent amplitude 

A ( y 2 )  = (1 - p)2 e (2y2+ ~)/~(1 -- e ~2y2+ 1~/~) (4.69) 

On the phase transition line and in the coexistence phase one has 
in the large-L limit n ( L - 2 y i ) = n ( L - 2 y 2 )  for finite distance r. Here the 
connected two-point correlation function does not depend on r: 

n ( L  - 2yl, L - 2y2) = -~(Y2) (4.70) 

with 

" 4 ( Y 2 )  = n ( L  - 2y2) [ 1 - p -- n ( L  - 2y2)] (4.71) 
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(The finite-size corrections are of order L 1/2.) We conclude that in the 
thermodynamic limit the connected density-density correlation function on 
the even sublattice is of a generalized scaling form 

n(xl, x2) = A(x2) r~e-r/r (4.72) 

with a critical exponent ~c = 0 and a space-dependent amplitude A. In the 
low-density phase A is nonvanishing only close to the boundary. On the 
phase transition line and in the coexistence phase one has ~ = ov and 
the amplitude is nonzero in a boundary region of width of order L I/z or in 
the interface, respectively. In this sense the boundary region (or the inter- 
face, respectively) is a critical region in the system. The correlation function 
vanishes if either of the two points is well inside the low- or high-density 
regions, independent of the phase. 

Since the model is defined on a ring, one may ask whether there are 
correlations between points close to the right and close to the left of the 
boundary. For  the even sublattice the answer is easy to find from the exact 
expression (4.67), which shows that the connected correlation function is 0 
for 2 ~< 2x, ~< L - N and 2X 2 > 2xl. 

For  the other connected correlation functions (involving even and odd 
or only odd sites) one obtains similar results. There is one difference, 
however: the density on the odd sublattice close to the right of the bound- 
ary (small 2 x -  1) is correlated with the density on the even and odd sub- 
lattices close to the left (high 2y or 2 y -  1, respectively) if the system is in 
the low-density phase. Setting Xl = 2x - 1, x2 = L - 2y, or x2 = L - 2y + 1, 
one obtains in the region defined by L - N < x 2 < ~ L  and 1 <~Xl <L--x2 

n(xl, x2)= (PZo~Z- PJ) s i n ( ; x 2 )  + n(x2)[P-n(x~) ] (4.73) 

On the phase transition line and in the coexistence region one has in the 
thermodynamic limit c~ = 1 and n(xl)=p and therefore n(xl, x2)=  0. In the 
low-density region one finds e = 2p/p and n(xl)= 2p. This yields 

(4.74) 

This correlation function seems to be independent of xl ,  but note that this 
expression is valid only in the range 1 ~<xl < L - x : .  There is a discon- 
tinuity at x ~ = L + l - x 2  [see the exact expressions (4.59) and (4.65)] 
beyond which this correlation function vanishes even in the low-density 
phase. 
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5. C O M P A R I S O N  W I T H  OTHER M O D E L S  A N D  C O N C L U S I O N S  

We have solved and studied a one-dimensional asymmetric exclusion 
process with a blockage equivalent to a two-dimensional vertex model with 
a defect line. The symmetries of the system are such that the subspace of 
states with nonzero eigenvalue of the transfer matrix is much smaller than 
its dimension. This enabled us to generalize the Bethe ansatz (3.3) by 
restricting it to this subspace in a suitably chosen basis defined by (3.13) 
and rules 3A-3D and by choosing boundary conditions on the wave func- 
tion appropriately [see (3.17)]. This is the first main result of this paper. 
The fact that the model can be solved by Bethe ansatz methods is some- 
what surprising because the defect-type boundary conditions considered 
here do not belong to the known classes of integrable boundary conditions. 
So one can ask whether also certain higher vertex models corresponding 
to multiparticle systems (2'9'14) with a defect line might be soluble by similar 
generalizations of the Bethe ansatz. It would be particularly interesting to 
know if the asymmetric exclusion process solved by Gwa and Spohn (12) 
with the Bethe ansatz for periodic boundary conditions remains integrable 
if a blockage-type defect is introduced. This would correspond to the model 
studied numerically by Janowsky and Leibowitz. (8) 

Given the Bethe solution, we presented a detailed study of the steady 
state of the model considered as a one-dimensional chain of particles 
moving around the ring with a blockage of strength p at the boundary con- 
necting sites L and 1. We computed exact expressions for the current j, the 
average occupation number n(x), and the two-point correlation functions 
n(x, y) as functions of x, y, and p for any number of particles N and any 
length L of the chain. This is the second main result, [see Eqs. (4.14), 
(4.15 ), (4.61 ), (4.59), and (4.65) ]. The average occupation numbers n(x) on 
the even and the odd sublattices differ by a constant which is the current 
j flowing in the system. We established the presence of phase transitions 
from a low-density phase to a coexistence phase at the critical density 
petit=p~2 and by the particle-hole symmetry (2.9) from the coexistence 
phase to a high-density phase at density t~crit = 1 - p / 2 .  The phase diagram 
is given in Fig. 2 in the density-blockage plane and in Fig. 3 in the 
current-blockage plane. 

In the continuum limit L ~ 0% p = N/L fixed, the rescaled density 
profile is asymptotically constant in the low-density phase (I) p < Porit" On 
the odd sublattice one has n(2x- 1) = pOda = 2p, while on the even sublat- 
tice p . . . .  = 0. The current j increases with p as j =  2p. In the coexistence 
phase there are two regions of different constant density. Taking the 
average densities of the even and odd sublattices, one finds ~rit = 



Asymmetric Exclusion Process 501 

/)left = 1 -  Pright = 1 -  Pcrit and j =  p. In the (asymptotically) uniform high- 
density phase p > Pcr~t the densities are given by pOdd = 1 and p . . . .  = 2p - 1 
and j = 2(1 - p). 

This phase diagram is qualitatively similar to one found numerically 
by Janowsky and Lebowitz (s) in a different model. They considered a fully 
asymmetric exclusion process with blockage and, as opposed to the case 
considered here, probabilistic movement of particles also in the bulk. In 
this case the dependence j (p )  is different and one cannot expect Por~t as 
a function of the blockage strength to be the same. Relations (4.30) deter- 
mining the average density profile in the continuum limit, however, do 
coincide. Whether the motion of particles in the bulk is deterministic or not 
does not seem to have much influence on the phase diagram. 

Studying large but finite systems, we observed in the low-density phase 
an exponential decay of the density profile near the blockage on a length 
scale ~ [see Eq. (4.35)]. The connected two-point correlation function is of 
a generalized scaling form n(x, y)  = A ( y )  r~e -r/r [Eq. (4.72)] with a space- 
dependent amplitude A and ~c = 0. On approaching the phase transition 
line, ~ diverges (in the thermodynamic limit) and the current reaches its 
critical value p as a power law, (4.45).~ In phase II the profile near the 
blockage is flat. The amplitude of the correlation function is nonvanishing 
only in the interface between the low-density region and the high-density 
region. In this area the correlation function is constant for finite distances 
r, but the amplitude is space dependent. The width of the interface grows 
a s  L 1/2 with the size L of the system if p r 1/2 and is 0 if p = 1/2. In the 
dynamical picture of the model the blockage causes particles to pile up and 
to introduce a shock into the stationary state. Our analysis shows that the 
fluctuations in the position of the shock (which corresponds to tile width 
of the interface) scale a s  L 1/2 if p is not infinitesimally close to 0 or 1/2. If 
p = 1/2, however, the dimension of the subspace spanned by eigenvectors 
with nonzero eigenvalues of the transfer matrix is only one-dimensional; 
the steady state is the only relevant state. So there are no relevant fluctua- 
tions and correspondingly no fluctuations in the shock position. These two 
kinds of scaling behavior support the hypothesis of Janowsky and 
Lebowitz (8) separating the fluctuations into a part originating in the 
"blockage randomness" (causing the L 1/2 law) and into a part originating 
in the "dynamical randomness" caused by the random movement of the 
particles in the bulk, which is absent in our model and therefore does not 
generate a L 1/3 behavior if p = 1/2 as in ref. 8. The flatness of the density 
profile near the blockage found in our model is not observed in ref. 8, 
where numerical analysis suggests that the profile decays as 1 / ( y - c )  to 
the value Pleft with distance y from the blockage. We suggest that there 



502 Sch~tz 

are nonvanishing density correlations close to the boundary even in the 
coexistence phase which produce this effect. They are absent in our model, 
where the motion of particles is deterministic. 

In order to get some insight in the influence of the boundary condi- 
tions on the phase diagram, we would like to compare the model discussed 
here with similar models but other boundary conditions. Recently Derrida 
et al. ~15) solved a fully probabilistic asymmetric exclusion process with open 
boundary conditions and injection of particles with rate e at one end of the 
chain and annihilation with rate fl at the other end. Here the phase 
diagram has a richer structure. In addition to the low- and high-density 
phases and the coexistence phase there is a maximal current phase where 
the current takes its maximal value independent of e and ft. In this phase 
the density profile near the origin (where particles are injected) decays as 
x-1/2 with distance x to its bulk value 1/2. It would be very interesting to 
study the deterministic model presented in this paper with this kind of 
boundary condition. 

Appendix .  T H E I N V A R I A N T S U B S P A C E O F  T(p) 

Here we prove rules 3A-3D and Eq. (3.13) defining an invariant right 
subspace of T(p) of dimension 

with 

(O<~N<~L/2) (A.1) 

Rule 3A can be written as 

"C2x OZy + 1 1 A ) = 0  (A :~ 0) 

the restriction 2 ~< 2x < 2y + 1 ~< L -  1. First note 

(A.2) 

that from the 
commutation relations (2.12) we immediately obtain 

(T'Zx--752xT'2x+l) T(p)='r2x~2x+lT(p)=O (xv~L/2) (A.3) 

and 

"C2xG2x+3T(p)~- T(p)(1 --o-2~ lO'2x) 7~2x+lr2x+20"2x+lO'2x+2(1 --'~2x+3~'2x+4 ) 

= 0 (x r L/2 - 1, L/2) (A.4) 

Acting with %xa2~+lT(p) o r  Z2x~TZx+3T(p ) on an eigenstate of T(p) 
therefore gives 0, implying that in eigenstates with nonzero eigenvalue 
the amplitude of a configuration with a particle on site 2x and a hole on 
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site 2 x +  1 or site 2 x + 3  must be zero. Furthermore, one obtains 
(2 ~< 2 x <  2y + 1 ~ < L -  1) 

T2x a2y + 1 T(p) = T(p)( 1 -- a2x _ 1 a2x) Z2x + i r2x + 20"2y -- 10"2y( 1 - -  v2y + 1 T2y + 2) 

(A.5) 

Acting with z2xa2y +iT(p)  on an eigenstate with nonzero eigenvalue proves 
3A by induction. 

The restriction 2y + 1 ~< L - 1 arises from the defect at the boundary, 
where the analogue to (A.3) reads 

ZLO" 1 T(p) = (1 - p) TF(1 -- a L_ , aL)(1 - -  T 1 T 2 )  (A.6) 

If p =  1 (no blockage), the r.h.s, of this equation is zero and consequently 
there is no restriction on 2x and 2y + 1 in 3A. If N<~L/2, this implies 
Z2x IA) =0.  

Rule 3B reads 

z2~zL+l-2x IA) = 0  (A r  (a.7) 

with 1 <~ x <~ L/2 and rule 3C states 

Z2xa2y+~aL--2y JA) = 0  (A ~ 0 )  (A.8) 

We start by proving rule 3B with 2 x = L  and 2 x = L - 2 .  From the 
boundary commutators (2.13) we obtain 

zLzl T (p )=  T(p)(1 - ~ L  I~L) ZlZ2 (A.9) 

Suppose N ~ L/2 and I A )  contains a state with particles on sites 1 and 2 
(so that zlz2 ] A ) r  Then according to 3A this state cannot have a hole 
on any odd site 3 ~< 2y + 1 ~< L - 1 ,  i.e., it must have at least L/2 + 1 par- 
ticles, in contradiction to the assumption N<~ L/2. Therefore zlz2 ]A ) =  0 
and consequently according to (A.9) ZLZl I A ) = 0  if A r  Using this 
result, one proves in a similar manner zL_2zs IA ) =  0 if A :~0. 

Having established the validity of 3B in this speciaI case, we can prove 
rule 3C with 2y + 1 = 1 and 2y + 1 = 3, 2 ~ 2x < L - 2y arbitrary. First note 
that 

ZZx~*aL I A >  = "C2x(1-  ~'L--"/71--'gL271) [ A )  = T2x(1 - - ~ ' L - - ~ ' 1 ) I A >  

Then the commutators (2.12) and (2.13) give 

%x(1 --'eL-- Zl) T(p) = T(p)(1 --aZx la2x) "C2x+I"~2x+2(O'L--IaL--"(I~2) 

(A.10) 

822/71/3-4-10 
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Acting with the r.h.s, of this equation on an eigenstate with A r 0 gives zero 
according to what has been proven so far; therefore r2xtrla L I A ) = 0 .  
Again similar arguments lead to "C2x0"3ffL_ 2 IA ) =  0 and from these results 
rules 3B and 3C follow by induction. 

Rule 3D is a simple consequence of 3A 3C: Suppose a state with a 
particle on site 2x has a nonzero amplitude in an eigenstate of T(p). Then 
according to rule 3A all odd sites larger than 2x up to site L -  1 must be 
occupied, too, and in addition to that each even site 2y, L/> 2y > 2x, or its 
reflected odd counterpart L + 1 - 2 y  must contain a particle (see 3B and 
3C). Since N<~L/2, rule 3D follows. 

Now we are in a position to prove (3.13) relating wave functions with 
some even arguments to wave functions with odd arguments only. Define 
the operator z(xl,..., xm) by 

~ ' ( X l  . . . . .  Xm) = f i  Zx, (A.11) 
i = 1  

Since the left eigenvector to eigenvalue 1 is the sum of all N-particle states 
with equal weight 4 =  1 (independent of p), one finds for the (unnor- 
malized) right wave function 

~'IA(X1 . . . . .  XN):  (11Z(XI ..... XN) IA ) (A.12) 

In particular, using rules 3A-3D and the boundary commutators (2.13), 
one obtains for 2 ~< x i ~< L - 1 

Ag~A(1, xl,..., XN--1)= (11ZlZ(Xl ..... XN--1) T(p) IA ) 

= p ( l l  v(xl ..... XN_ I) TP(1 --~ L_ l tr L) IA ) 

= p ( l [  Z(Xl,..., XN-1) T(p)(1 - -~rL_I~L)[A) (A.13) 

The last equation is due to the fact that acting first with z to the left 
projects out all states with particles on sites L and 1. Acting then with T 
to the left again does not depend on p and we can substitute T e by T(p). 
On the other hand, one gets 

AgtA(xl,..., X N _ _  I ,  L) 

= (11 ~'L~'(Xl . . . . .  XN_I) T(p) IA)  

= (1 - p ) ( l l  v(xl,..., X N 1) TF( 1 --aL--I~rL)IA) 

= (1 - - p ) ( l l  27(Xl . . . . .  XN_I) T(p)(1 - - a L - ~ a L ) I A 5  (A.14) 

As a result, if A ~ 0, we conclude 

1 - p  
gtA(Xl ..... XN-1 ,L )=  gtA(1, Xl,'",XN 1) (A.15) 

P 
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and (3.13) follows by induction. Rules 3A-3D select a set of configurations 
that contribute to the relevant eigenvectors of T(p). The number of these 
configurations is clearly larger than d u ( L  ) [see (A.1)] ifp ~ 0, 1, but (3.13) 
states that the amplitudes of configurations with particles on even sites are 
in a fixed relationship (i.e., independent of the particular eigenvector) with 
the amplitudes of exclusively odd configurations. This reduces the number 
of linear independent configurations in this subspace to dN(L), as stated 
above. 
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